2025-09-03 16:53:42 星期三
全都是简单的小应用,应付考试而已
例2 试证明下列命题:
(1) 设 \(E_1\supset E_2\supset\cdots\supset E_k\supset\cdots\), \(E=\bigcap_{k=1}^{\infty}E_k\), \(f\in L(E_k)\) \((k\in\mathbb{N})\), 则\[\lim_{k\to\infty}\int_{E_k}f(x)\,dx=\int_Ef(x)\,dx. \]
Pf.
\(\int_{E_k} f(x) dx = \int_{\mathbb{R}^n} f(x) \cdot \chi_{E_k} dx\)
\(\int_E f(x) dx = \int_{\mathbb{R}^n} f(x) \cdot \chi_E dx\)
而且 \(\lim_{k \to \infty} f(x) \chi_{E_k}(x) = f(x) \chi_E(x)\) (因为 \(\forall x \in E = \bigcap_{k=1}^{\infty} E_k\),\(\chi_{E_k}(x) = 1 = \chi_E(x)\);\(\forall x \in E^c\) 由于 \(E = \bigcap_{k=1}^{\infty} E_k\) \(E_k\downarrow\) 则 \(\exists N, \forall k>N\) \(x\notin E_k\) \(\Rightarrow \chi_{E_k}(x)=0=\chi_E(x)\) ,综上,\(\lim_{k \to \infty} \chi_{E_k}(x) = \chi_E(x)\) )
而且 \(|f \cdot \chi_{E_k}| \leq |f \cdot \chi_E|\) , \(|f \cdot \chi_E|\)可积,由控制收敛定理:
(2) 设 \(f_k\in L(E)\), 且 \(f_k(x)\leqslant f_{k+1}(x)\) \((k\in\mathbb{N})\). 若有
\[\lim_{k\to\infty}f_k(x)=f(x)\ (x\in E),\quad\left|\int_Ef_k(x)\,dx\right|\leqslant M\ (k\in\mathbb{N}),\]则 \(f\in L(E)\), 且有
\[\lim_{k\to\infty}\int_Ef_k(x)\,dx=\int_Ef(x)\,dx. \]
Pf. 考虑\(\{f_n-f_1\}\) \(f_n-f_1\geq 0\) 由Levi定理
(3) 设 \(\lim_{k\to\infty}\int_E|f_k(x)-f(x)|\,dx=0\), \(g(x)\) 是 \(E\) 上有界可测函数, 则
\[I=\lim_{k\to\infty}\int_E|f_k(x)g(x)-f(x)g(x)|\,dx=0.\]
Pf. \(|f_kg-fg|\leq|f_k-f|g|\to 0\) \((k\to\infty)\)
(4) 设 \(\{f_k(x)\}\) 是 \(E\) 上非负可积函数列, 且 \(f_k(x)\) 在 \(E\) 上几乎处处收敛于 \(f(x)\equiv 0\). 若有
\[\int_{E} \max \{f_{1}(x), f_{2}(x), \cdots, f_{k}(x)\} \mathrm{d}x \leqslant M \quad (k=1,2,\cdots), \]则 $$
\lim_{k \rightarrow \infty} \int_{E} f_{k}(x) \mathrm{d}x = 0.$$