2025-09-02 16:03:40 星期二
好想买东西,好不想开学,不想上课,哦,我倒是也很想买书,只是这次绝对不是想买数学书了,我看不下去了。表达欲渐渐降低,自己终于也是成为了无趣的大人,在数不尽的考试中盲目奔波。
Chapter 1 曲线的局部理论
§1.1 平面曲线
对于曲线 \(\vec{r}(t) = (x(t), y(t))\),切向量 \(\vec{r}'(t) = (x'(t), y'(t))\),模长 \(|\vec{r}'(t)| = \sqrt{(x'(t))^2 + (y'(t))^2}\)。
弧长 \(s = \int_a^t |\vec{r}'(t)| dt\),\(s(t)\) 单调递增,故存在反函数 \(t = t(s)\),代回 \(\vec{r}(t)\) 可得弧长参数表示:
\[\vec{r}(s) = (x(t(s)), y(t(s)))
\]
且有:
\[\left|\frac{d\vec{r}}{ds}\right| = \left|\vec{r}'(t) \cdot \frac{dt}{ds}\right| = |\vec{r}'(t)| \cdot \frac{dt}{ds} = \frac{ds}{dt} \cdot \frac{dt}{ds} = 1
\]
其中:
\[s(t) = \int_a^t |\vec{r}'(t)| dt,\quad \frac{ds}{dt} = |\vec{r}'(t)|
\]
计算1:求弧长参数表示单位切/法向量
例题1:\(\vec{r}(t) = (a\cos t, a\sin t)\),求弧长参数表示单位切/法向量?\(t \in (0, 2\pi)\)
解:
\[\vec{r}'(t) = (-a\sin t, a\cos t),\quad |\vec{r}'(t)| = a
\]
\[s(t) = \int_0^t a\, dt = at \Rightarrow t = \frac{s}{a}
\]
弧长参数表示为:
\[\vec{r}(s) = \left(a\cos\frac{s}{a}, a\sin\frac{s}{a}\right)
\]
单位切向量:
\[\vec{t} = \frac{d\vec{r}}{ds} = \left(-\sin\frac{s}{a}, \cos\frac{s}{a}\right)
\]
单位法向量:
\[\vec{n} = \left(\cos\frac{s}{a}, -\sin\frac{s}{a}\right)
\]
计算2:求曲率
例题(续):由上例,曲率 \(k(s) = \left\langle \vec{t}', \vec{n} \right\rangle\)
\[\vec{t}' = \left(-\frac{1}{a}\cos\frac{s}{a}, -\frac{1}{a}\sin\frac{s}{a}\right)
\]
\[\vec{n} = \left(\cos\frac{s}{a}, -\sin\frac{s}{a}\right)
\]
\[\Rightarrow k(s) = \left\langle \vec{t}', \vec{n} \right\rangle = \frac{1}{a}
\]
例题 1.1 研究曲率为常数的曲线
解:
① \(K(s) = 0\),则 \(\vec{t}' = 0\),积分得:
\[\vec{t}(s) = \vec{t}(s_0) \Rightarrow \vec{r}(s) - \vec{r}(s_0) = \vec{t}(s_0)(s - s_0)
\]
即 \(\vec{r}\) 为直线。
② \(K(s) \equiv C \neq 0\),考虑:
\[\vec{c}(s) = \vec{r}(s) + \frac{1}{K(s)} \vec{n}(s)
\]
\[\frac{d\vec{c}}{ds} = \vec{t} + \frac{1}{K(s)} (-K(s)\vec{t}) = 0 \Rightarrow \vec{c} \text{ 为常向量}
\]
则:
\[\vec{r}(s) - \vec{c} = -\frac{1}{K(s)} \vec{n}(s) \Rightarrow |\vec{r}(s) - \vec{c}| = \frac{1}{|K(s)|}
\]
即 \(\vec{r}\) 是以 \(\frac{1}{|K(s)|}\) 为半径的圆。
例 1.2 求 \(\vec{r}(t) = (t, \sin t)\) 的曲率 \(K(t)\)(注意:此处使用参数 \(t\))
解:
\[\vec{r}'(t) = (1, \cos t),\quad |\vec{r}'(t)| = \sqrt{1 + \cos^2 t} = \frac{ds}{dt}
\]
单位切向量:
\[\vec{t} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} = \frac{1}{\sqrt{1 + \cos^2 t}}(1, \cos t)
\]
单位法向量(取与 \(\vec{t}\) 垂直且指向曲线凹侧的方向):
\[\vec{n} = \frac{1}{\sqrt{1 + \cos^2 t}}(-\cos t, 1)
\]
计算导数:
\[\frac{d}{dt}\left(\frac{1}{\sqrt{1 + \cos^2 t}}\right) = \frac{\sin t}{(1 + \cos^2 t)^{3/2}}
\]
由曲率定义:
\[\frac{d\vec{t}}{ds} = K(s) \vec{n} \Rightarrow \frac{d\vec{t}}{dt} \cdot \frac{dt}{ds} = K(t) \vec{n}
\]
代入得:
\[K(t) = \frac{-\sin t}{(1 + \cos^2 t)^{3/2}}
\]